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ABSTRACT
In the last few years, the FDA has begun to recognize de novo
pathways (new approval processes) for approving AI algorithms as
medical devices. A major concern is that the review process does
not adequately test for bias in these models. There are many ways
in which bias can arise in deployed AI models, including during
data collection, training, and model deployment. In this paper, we
adopt a framework for categorizing medical dataset bias in a fine-
grained manner, which enables informed, targeted interventions
for each issue appropriately. From there, we propose policy rec-
ommendations to the FDA and NIH to promote the deployment of
more equitable AI diagnostic systems.
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1 INTRODUCTION
In 2016, researchers in Germany built a neural network to identify
skin cancer (melanoma) cases based on clinical images [26]. The net-
work was trained on over 100,00 skin images, and was able to detect
95% of melanoma cases in a new set of data accurately, outperform-
ing a panel of 58 certified dermatologists who were collectively
∗Both authors contributed equally to this research.
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88.9% accurate. This research was published in Annals of Oncology
and was heralded as a sign that diagnostic artificial intelligence (AI)
should be incorporated into clinical practice. However, there was
a problem: more than 95% of the data used to train the model de-
picted white skin [36]. Given that the model was trained on largely
homogeneous data, the algorithm is not likely to generalize to a
more diverse population.

This case is not exceptional by any means, as bias is incredibly
pervasive in the field of medical diagnostics. For example, a Toronto-
based startup built an auditory test for detecting Alzheimer’s, but
it only worked for fluent English speakers of a speakers of a spe-
cific Canadian dialect [22]. In addition, many commonly-used facial
recognition systems are up to 20% better at identifying lighter-
skinned individuals, and were even worse at identifying darker-
skinned women [19]. There is clearly immense need for regulatory
measures in the development of AI systems, as these systems be-
come increasingly more integrated into society. Experts predict
that artificial intelligence will completely revolutionize the field
of diagnostics, allowing doctors to make diagnoses exponentially
faster and more accurately [50] [15]. Implemented correctly, AI
could make healthcare universally more accessible. However, it
could also worsen already deeply-entrenched healthcare disparities.
In particular, we may increase disparities observed along demo-
graphic lines such as worse outcomes amongst racial and ethnic
minorities and low-income people. A recent study has shown that
a currently deployed algorithm used to manage the health of popu-
lations shows strong racial bias because of poorly-chosen health
outcome measures [40]. We are at a turning point in the field of
diagnostics - a turning point where we have the chance to create
AI systems that are both highly accurate and that combat institu-
tionalized inequality rather than perpetuate it.

There are numerous potential sources of bias within the currently
known framework for understanding AI. These sources of bias can
be roughly categorized into data collection, data aggregation, and
interpretations of model results [15] [49]. In this context, the term
“bias” refers to an unintended or potentially harmful property of
the data.

The US currently has no legislative framework for determining
bias in datasets in general. We hope that the following recommen-
dations to mitigate bias in medical AI can serve as a model for other
domains as well (for example, prohibiting hiring discrimination
that occurs as a result of hiring/recruiting algorithms). Notably,
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medical data is among the most sensitive and well-protected forms
of data, and therefore serves as a useful case study in balancing
pathways for innovation with legislative oversight.

Our recommendations are as follows:
(1) Design research incentives to diversify medical dataset gen-

eration through the NIH and NSF.
(2) Standardize an FDA regulation process (SaMD pathway)

to evaluate algorithm robustness to real-world data before
deployment.

(3) Create a standard pathway and incentives for hospitals and
other organizations to publish anonymized datasets for aca-
demic and industrial use.

The rest of this paper is organized as follows. We begin by dis-
cussing the current regulation of ML for clinical diagnosis and the
need for increased research diversity in Section 2. Next, in Section
3, we review the framework for categorizing bias in medical data
generation, and then discuss the relevant stakeholders in Section 4.
We present our policy recommendations in Section 5. Finally, we
discuss limitations in Section 6 and offer a concluding summary in
Section 7.

2 CURRENT POLICY FOR AI DIAGNOSIS
As artificial intelligence matures and becomes more widely-used,
researchers and other stakeholders look to AI and machine learning
methods specifically to automate and standardize the diagnostics
process and take advantage of increasingly large datasets to improve
detection and treatment of diseases. There is also a large body
of research to suggest that AI could improve the patient-doctor
relationship by automating routine medical tasks, thereby allowing
doctors more time to focus on being present and empathetic with
the patient [50].

The FDA (Food and Drug Administration, which is the federal
agency responsible for approving new drugs and medical devices)
has already approved over 30 AI-based healthcare algorithms, in-
cluding several diagnostic algorithms [20] [4]. However, numerous
limitations and concerns impact the clinical implementation of
these algorithms [51].

The FDA continues to approve increasingly more AI-based pro-
grams (referred to as “Software as a Medical Device” (SaMD)) each
year. There were two approvals in all of 2017, but by mid-2018 the
FDA was approving them as frequently as once or twice a month
[38]. These FDA approvals also reflect increasingly less reliance on
physicians. In 2018, the FDA permitted the marketing of a SaMD to
detect diabetic retinopathy (a diabetes-related eye problem that can
cause blindness) without the need for a clinician, called IDx-DR [3].

The device was approved under the De Novo (i.e, novel and un-
precedented) approval pathway, and tested with 900 patient retinal
images from 10 primary care sites [16]. The FDA has therefore
actively demonstrated an interest in determining new regulatory
guidelines for artificial intelligence as a medical device. The diver-
sity of patient populations in this dataset was described to some
degree: it was shown to be relatively high, compared to other US-
based datasets (37% of the population was non-white, and genders
were represented approximately equally), with some exceptions of
specific groups; namely, American Natives and Asian Americans
were less significantly less represented in the dataset, despite the

high prevelance of diabetes in these subpopulations [16]. Given that
we know that diabetes may affect each group’s biomarkers differ-
ently [27] – and it is unknown how ethnicity may affect nuances of
diabetic retinopathy screening – we believe it may be prudent to in-
clude IDx-DR results alongside diabetes blood biomarkers stratified
by ethnicity.

Earlier this year, the FDA proposed a set of guidelines for reg-
ulating under what conditions an AI-based SaMD need to be re-
approved when updated [4]. There are mentions of the need for
quality assurance in data that is used to train algorithms, but little
emphasis on bias. The former FDA commissioner, Dr. Scott Got-
tlieb, released a statement this April explaining that old regulatory
frameworks for SaMDs are not flexible and appropriate for algo-
rithms that can learn and adapt to real-world data as they are used
[5]. As of 2020, to our knowledge, no deployed clinical AI systems
update in real-time yet. Perhaps real-time data adaption may be
useful for clinical ML one day, but whenever that is, we believe that
algorithms should necessarily be trained and tested with a large
quantity of diverse data as a certification before deployment.

We encounter a related concern when examining how to effec-
tively test these algorithms: for academia and research in general,
patient-level clinical datasets are relatively scarce. The Health Insur-
ance Portability and Accountability Act of 1996 (HIPAA) protects
identifiable medical data from public usage, and patients must con-
sent to the use of their data in a research setting, unless the data has
been de-identified. A significant amount of AI research is conducted
with a small number of accessible datasets. For example, MIMIC-III,
a large ICU dataset curated by researchers from MIT’s Computer
Science and Artificial Intelligence Lab (CSAIL), has already been
cited over 900 times since its publication in 2016 [31]. Similarly, the
ISIC archive dataset on melanoma detection is used very often in
melanoma AI-diagnostic research [30]. The problem most research
being done any small number of datasets is that any biases – be
it racial, gender, geographic, age-based, etc – which are present
would be magnified from the large number of studies performed.
For instance, MIMIC-III comes from one hospital in the city of
Boston, which is not representative of many regions in many ways.
It is therefore very important that we validate algorithms with a
variety of data, with the hope being that it is more likely for a given
representation-based bias to cancel out in the aggregate of many
diverse studies [8].

In general, medicine has historically catered to the needs of
demographic groups centered by societal hierarchies, which in Eu-
ropean and North American contexts have been white male-bodied
people (often those with enough financial and social resources to
be able to seek medical care). Known genetics datasets are largely
homogeneous and white [35], and racial disparities have persisted
in a variety of disease-specific contexts despite activism efforts [6].
It is therefore within the best interests of activists representing
these communities to encourage research that pertains specifically
to marginalized groups, perhaps through the creation of federal
research funding opportunities for research that seeks to create
datasets and algorithms pertinent to minority populations.

2
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3 BIAS OVERVIEW
Artificial Intelligence (AI) is a blanket term that refers to software
that can aid in human cognition. If a training set is biased, then
the model that the AI develops will be overfit to the biased data,
and will not be able to handle other data very well, because it has
never been exposed to it. Imagine training an AI to detect broken
arms, branding it as a “broken bone detector,” and then using it to
detect a broken rib. Everyone understands that strategy would fail
because the patterns that the AI has learned in order to differentiate
images of broken arms from uninjured arms will not generalize
to distinguishing broken ribs from intact ribs. Not every example
of bias is as obvious as that example, but even effects that may
seem small to some people can have large impacts both on system
performance and on downstream outcomes.

Throughout the field of AI-based diagnostics systems, there are
relatively few medical datasets that researchers may gain access to
and train algorithms with. Medical datasets are inherently subjected
to bias, as we will argue in this section. For example, consider how
datasets on HIV/AIDS infection rates in the early years of the U.S.
epidemic were necessarily biased by medical institutions seeking to
primarily identify white men in urban centers as the main target of
the disease, when in reality, the disease disproportionately affected
people of color [18]. More recently, studies have shown that several
wearable health devices meant to measure heart rate and energy
expenditure (such as the Fitbit Surge and Apple Watch) are biased
on the basis of skin color [47]. However, it is important to consider
exactly what is meant by the term bias, and how different kinds of
bias impact our understanding of how to correct for it [49].

Our discussion will focus on the following sources of bias, pro-
posed by Suresh et al. 2019: [49]:

• representation bias: when the training data is not repre-
sentative of the data used in practice.

• measurement bias: when the way that the training data is
measured or collected introduces inaccuracies in the model.

• aggregation bias: when combining data improperly creates
results that are inconsistent across different data types.

• historical bias: when a dataset accurately reflects real-world,
but its usage perpetuates existing societal bias

In Figure 1, we can ascertain how these varieties of bias arise
during the overall process of data collection and model implemen-
tation. This paper will focus primarily on issues of data generation
and collection, though the authors believe there should also be
sufficient attention devoted to mitigating bias in model training
and evaluation as well.

3.1 Representation Bias
Returning to the skin cancer detection algorithm [26], the model
was trained on 95% white skin and is less likely to generalize to
darker-skinned populations. To fix this, the researchers could add
additional data with a variety of skin tones, and re-train the algo-
rithm on this more diverse dataset. This would hopefully result
in much better performance on these cases. This is an example of
representation bias in medical data collection: when the training
dataset population for a model is not representative of its real-world
usage [23]. Representation bias can often arise from the availability
heuristic: datasets are hard enough to create and distribute as it is,

Figure 1: Types of biaswithin themachine learning pipeline.

especially when generating a more representative cohort would
either entail downsampling the existing records to achieve popula-
tion representation or to spend more money to actively seek out
patients that have slipped through the cracks. On the other hand,
because datasets are so rare, the value of creating a new one that
many researchers will use should incur additional responsibility to
take representation bias seriously.

3.2 Measurement Bias
Consider the case of gender and coronary artery disease (CAD)
diagnosis. For a long time, the guidelines for diagnosing CAD were
based primarily on the symptoms experienced by men. Though
women share many of the same traditional risk factors with men,
they have some unique differences in pathophysiology that can
result in misdiagnosis if the same criteria are applied universally
[25]. For instance, frequently, women do not experience chest pain
alongside CAD to the same extent as men, and physicians are
less likely to diagnose them with CAD. If we build a model based
on a dataset that relies heavily on chest pain and other primarily
male-bodied criteria as main indicators of CAD, we will have a
model that will be woefully inaccurate for female-bodied people.
This is a case of measurement bias, because the quality of data for
male and female-bodied individuals is different. Another example
of measurement bias would be if we used an inaccurate indicator
for CAD diagnosis, such as treating a high cholesterol level as the
primary indicator of CAD rather than as a feature affecting the
diagnostic outcome.

Electronic Health Records (EHR) are often vary in quality within
different subpopulations; this difference in quality could be de-
scribed as measurement bias [10]. This is a well-documented phe-
nomenon [53] [28]. One study found that EHR data is most com-
plete for severely ill patients (with severity of illness measured
independently from the EHR data). Specifically, doctors tended to
record laboratory results for severely ill pneumonia patients more
often than for healthy patients undergoing the same tests [29]. This
makes sense, in a hospital context, given the many demands on a
physician’s time and resources. However, it means that clinical re-
sults based on EHR data is necessarily biased to the most ill patients
rather than accurately capturing the spectrum of manifestations of
a disease [29]. This difference in data quality across groups with

3
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different illness severities is therefore introducing measurement
bias into any classifier built on said EHR data.

3.2.1 Adversarial Attacks. In a similar vein, we can also consider
the fact that data can be altered in order to essentially “game” the
outcome of AI systems; there is a danger that diagnostic AI systems
can be tricked in practice if practitioners feed slightly altered data
into the system. This alteration can take the form of noise (i.e. small,
pixel-level changes) that is imperceptible to the human eye, but
takes advantage of the specificity of AI training systems to cause the
system to misdiagnose the image [7]. Because the healthcare system
is naturally adversarial in some areas (e.g. whether to reimburse an
insurance claim, whether an insurer should receive a cost-sharing
subsidy for serving a sicker-than-average population, etc), this kind
of attack may prove to be especially concerning.

3.3 Aggregation Bias
Although the other forms of bias refer to a characteristic of a dataset,
aggregation bias refers to a process: the application of a one-size-
fits-all model to a diverse dataset (even if the training data had no
other problems). Aggregation bias (also referred to as “Hidden Strat-
ification” of sub-populations) occurs when a large umbrella label is
composed of many heterogeneous sub-groups but are nonetheless
all modelled as one. An example of this lies in fitting a one-size-fits-
all model to study diabetes in a population, even when it is known
that certain blood biomarkers for diabetes diagnosis differ vastly
across ethnicities [27]. Moving outside typical notions of “bias,” an-
other example of hidden stratification was identified in chest X-Ray
classification: although a model achieved respectable performance
when classifying patients who did vs didn’t have pneumothorax
(i.e. collapsed lung), the more clinically meaningful task was iden-
tifying patients whose collapsed lungs were not yet treated, and
on that task, the model performed 10% worse because it optimized
for the much more common case of already-treated pneumothorax
[39]. The given label of “pneumothorax” was an umbrella term that
contained many different sub-groups.

A static dataset doesn’t inherently have aggregation bias, but
rather the identified harm comes from inappropriate use of the said
data. However, there is indeed a characteristic which is intimately
related to aggregation bias: heterogeneity. By definition, this bias
can only happen on hetergenous populations, where one-size-fits-
all solutions cannot work for everyone. Similarly, when a dataset is
heterogenous, there is a high likelihood that models fit on the data
will have this bias, unless the engineer exercises constant vigilance
towards safety and fairness.

3.4 Historical Bias
Unfortunately, it’s also possible that a dataset may be representative
of the true population and measured correctly, yet it still reflects
pre-existing social inequalities. In 2019, researchers discovered
that an algorithm being used to decide the care for millions of
patients was heavily underestimating the health needs of the sickest
black patients [41]. The algorithm was not intended to be biased;
it was trained to forecast future spending (as a proxy for patient
sickness), but unfortunately there is an existing systemic bias in the
healthcare industry, wherein less money is spent on a black patient
than a white patient at the same severity of illness. It is imperative

that we take into account historical (i.e. real-world) biases when
interpreting and building models on medical data, and that we make
sure that resources are allocated fairly and responsibly when basing
assumptions on algorithmic outputs. Unlike representation bias,
this variety of bias is not easily solved with the addition of more,
thoughtfully collected data; the problem is that the data reflects a
deeper underlying injustice.

There is also an overarching societal bias that we must consider
when building AI-based diagnostic tools: the fact that medical re-
search trends in general reflect the needs of those with the most
power and influence. Therefore, it follows that there is a scarcity of
medical research that addresses the needs of historically oppressed
populations. Furthermore, we must consider how issues of health-
care access and patient empowerment affect both data collection
and use of the algorithm in practice. This may be best implemented
by empowering diverse oversight and planning committees to be
ensure the ethics and and accountability of the research projects.

4 STAKEHOLDERS
In establishing guidelines for dataset collection for AI-enabled diag-
nostics, we must consider the interests of the various stakeholders,
as well as how these interests may at times conflict with each other.
We want to explain both concrete strategies for ensuring appro-
priate dataset diversity, and the reasoning behind each of these
recommendations, to ensure that relevant stakeholders understand
why our recommendations are important and should be followed.
Specifically, we will consider the following stakeholders: patients,
governmental agencies and regulatory bodies, medical corpora-
tions (including pharmaceutical and medical devices companies),
insurers, doctors and their representatives, and researchers.

First, we must consider the people who are in many ways the
ultimate stakeholders: the patients who will be diagnosed through
emerging AI systems. Typically, patients want to have AI-enabled
diagnostic systems be as accurate and unbiased as possible, while
also minimizing the costs (financial or otherwise1) of such systems,
so that they are widely accessible to those who may need to utilize
them. Governmental regulatory bodies often serve as proxies for
protecting consumers, as they create and enforce regulations to
ensure patient safety. Patients should already be willing to sup-
port these guidelines, as the proposed rules were designed with
specifically their interests in mind. We believe that the most orga-
nized way to engage with patient stakeholders is through patient
advocacy organizations, such as the American Heart Association
and the National Organization for Rare Disorders. Many of these
organizations are represented in the National Health Council, a
nonprofit umbrella organization [9].

Another set of key stakeholders are governmental regulatory
bodies, chiefly the FDA (Food and Drug Administration). It is the
mission of the FDA to ensure that new medications and medical
devices are safe to use and meet testing standards before being avail-
able on the market. The FDA provides rules and guidance on the
clinical trial process, which has been required for new drugs since
the 1970s. The FDA is especially concerned with “Adherence to the
principles of good clinical practice (GCP), including human subject

1Sometimes patients indicate that they cannot come in to the clinic more than once
because they cannot take time off from work.
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protection (HSP)” [1]. Relevant to our goal of ensuring the diver-
sity of datasets used for AI-enabled diagnostics, the FDA recently
released a set of guidelines [17] aimed at enhancing diversity in
clinical trial populations, which is currently in the public comment
phase. The guidelines are non-binding and include such recommen-
dations as broadening clinical trial population recruitment pools
through advertising their existence through a wider set of channels
and specifically targeting underrepresented populations, as well
as putting in place “inclusive retention policies”, meaning ways of
ensuring that diverse groups of patients stay in clinical trials once
they have started participating in them. This demonstrates that
they already support establishing guidelines to increase diversity in
datasets for AI healthcare tools. The FDA has the power to regulate
and approve AI-enabled diagnostic models, and they have the duty
to ensure that every SaMD is safe and effective.

Another set of stakeholders that we will need to consider in our
analysis are pharmaceutical companies and other corporations that
operate in the medical space. Medical corporations serve an im-
portant role in providing necessary supplies for the diagnosis and
management of diseases, and are motivated by sales of these sup-
plies. Our current system does not incentivize medical corporations
to ensure equal access to their services, especially when operating
in conjunction with fee-for-service payment models. We believe
that it is unlikely that industry groups and for-profit corporations
would “self-regulate” appropriately to enforce dataset collection
guidelines and audits on themselves. We believe that many of these
biases – by virtue of applying to minority populations – represent
market failures where sufficient effort towards diversity will yield
diminishing financial returns. A benefit of increasing the diversity
of available medical datasets is that this information will help com-
panies develop more personalized drugs. The granularity of new
datasets developed as a result of our recommendations may also
help companies better serve the needs of diverse market segments
that were previously overlooked.

Most healthcare provider decisions are heavily influenced by
insurance coverage in the U.S., and thus insurers will ultimately
determine the success or failure of AI diagnostic tools. Insurers
must agree to reimburse the use of these models in hospitals in
order for them to be adopted. We can look to telemedicine as a
cautionary tale for Diagnostic AI: a seemingly good idea, yet most
hospitals and clinics never adopted at scale. That said, in capitated
healthcare systems, such as the VA (where the healthcare system
is incentivized to keep patients healthy and does not receive addi-
tional compensation by doing additional services), telemedicine is
widely used. This demonstrates the disconnect between a tool that
is effective and a tool that is widely used. Insurers main concerns
will be regarding model accuracy and liability; because the software
is being treated as a medical device by regulators, we think it is
likely for insurers to reimburse for them as well.

We must also consider doctors, the medical associations who
represent them, such as the American Medical Association (AMA),
and hospital systems where these doctors practice medicine. Hospi-
tals are likely to be in favor of these AI-based diagnostic models, as
they will – in theory – standardize adoption and reliability of clini-
cal systems. Doctors will be on the frontlines of using AI-enabled
diagnostics systems with their patients to augment their practice.
Ideally the tools will return more time and energy to devote to truly

empathizing and caring for their patients instead of bookkeeping
(a common complaint among medical professionals) [50]. It is vital
that doctors’ interactions with AI be extremely thoughtfully consid-
ered, in order to avoid burdening doctors with clunky systems and
creating overreliance on algorithms that lack human common sense
[52]. It is also important to ensure that the guidelines developed
by the FDA are easily understood by doctors and other medical
professionals, so that doctors understand that these systems are
beneficial for the patients.

Finally, in making our recommendations we want to emphasize
the importance of researchers as stakeholders (in research universi-
ties, research institutions, and private company settings), who will
be assembling the datasets for AI-enabled diagnoses. We expect
that the prestige-based incentive described in Section 5 will help
encourage researchers to develop these diverse datasets, especially
if it is tied to special grants.

5 RECOMMENDATIONS
Our primary goal in this paper is to recommend a set of guidelines
for reducing bias in diagnostic AI systems. These varieties of biases,
as covered in Section 3, are representation bias, measurement bias,
aggregation bias, and historical bias. The general approaches we
would like to take in combating these kinds of bias are as follows:

From a pragmatic perspective, managing each kind of bias re-
quires a different kind of intervention. Representation bias is per-
haps the most straightforward to address, in that there is clearly a
need for the population in a medical data training set to be represen-
tative of the population with which a diagnostic algorithm will be
used. Measurement bias is more difficult to detect from a regulatory
standpoint; it requires a high degree of domain expertise to know
whether the collection of data for diagnosis is oversimplifying a dis-
ease or that risk factors are measured incorrectly. Aggregation bias
similarly requires expertise in medicine and social determinants of
health, and a technical understanding of best practices in selecting
models and training data. Finally, correcting for historical bias and
the idea of encouraging more equitable research is a nuanced and
sensitive issue of social change. Please see Table 1 for a summary
of these varieties of bias and our corresponding recommendations.

5.1 Addressing Representation and
Measurement Bias

To combat representation bias, we would like to encourage training
on diverse datasets for data used in AI-enabled diagnostics systems.
Our recommendations will be primarily aimed at governmental
regulatory bodies, chiefly the FDA. First, we suggest that the FDA
draft a similar variety of document to the current guidelines on
encouraging diversity in clinical studies (which are currently under
public comment) [2]. The datasets should include breakdowns by
demographic (e.g. gender, age, ethnicity), in keeping with guidelines
set forth by the FDA for transparency of representation in clinical
datasets [14]. This document would also include a suggestion to
use a standard data format, such as FHIR, to make it easier for these
regulatory bodies to test the AI models without needing to convert
the data to the format that the developers chose to use for this
particular system. This should also help compare the quality of data
across sub-populations to assess potential measurement bias.
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In order to encourage the formation of such datasets, we would
recommend that the NIH and the medical research community in
general institute incentives to increase open data sharing. The main
evidence-based incentive that has been investigated to date in this
area is badges for data sharing [46]. This practice involves journals
awarding badges to researchers that have curated high quality
datasets that others may benefit from, and was proven effective at
increasing the number of data sharing publications in the journal
[33]. Many experts in this area suggest that an effective incentive
system may involve the use of prestige and recognition [46]; for
instance, the NIH could have a page of top contributing institutions,
and include author names and affiliations immediately alongside
public datasets in the DASH dataset webpage (prestige is a powerful
motivator, and has a relatively low implementation cost). We would
also specifically recommend larger grants for the development of
datasets with higher representations of historically underprivileged
groups.

Secondly, we suggest that the FDA develop private data repos-
itories with diverse patient profiles, and test AI-based diagnostic
models before they are used in clinical practice. Testing models
with these datasets will help determine if the model suffers from
measurement and representation bias based on previously-utilized
insufficient training data. The easiest way to collect this data would
be to put out an RFP requesting this sort of dataset while keeping
it private (to ensure developers of diagnostic models cannot train
on the testing data beforehand), which would necessarily follow
all of the FDA’s guidelines. These RFPs would be released based
on known trends in the field (e.g., based on the knowledge that
there is a high interest in developing algorithms for automating
radiology tasks right now, the FDA would release an RFP for chest
X-Ray datasets) and in anticipation of applications from private
developers. They could develop the dataset in-house, but this would
be more difficult, as the FDA as a whole does not have much of a
background in data collection. The use of a common data format
will make this significantly easier, but the FDA will need to develop
conversion programs from the standard format to other formats for
any AI models that do not use the chosen standard format. Alter-
natively, the FDA could simply not approve any models that do not
use the standard data format, which would simplify their process.
We would further recommend that the FDA draw on these datasets
to improve the robustness of these models before they enter the
market.

5.2 Addressing Aggregation Bias
As discussed in Section 3, aggregation bias is different from is
closely tied to heterogeneity in the dataset. Recent technical work
in hidden stratification has identified methods for counteracting
these harms on both the supply side (Schema Completion by the
dataset creator) and demand side (Error Auditing by a regulator,
such as the FDA) [39]. We believe that the best way to reduce this
insidious bias is with a combination of both approaches.

On the dataset creation side, we recommend the creation of a
industry-standards “best practices” checklist for dataset creation.
This checklist will embrace transparency, and encourage Schema
Completion for issues that should be foreseeable to the creator. As
it stands, there is little incentive for hospitals to release medical

datasets for researchers to use. Because of the additional hurdles
that this could impose on an already undervalued role of releasing
data, the FDA and NIH should institute incentives for medical in-
stitutions to curate more medical datasets with said transparency
checklists akin to “Datasheets for Datasets” [21] and “Model Cards
for Model Reporting” [37]. We envision that this checklist would
include factors such as demographic breakdown, quantification of
heterogeneity, IRB approval notes, recommended stratification on
subpopulations, mechanisms used in medical data collection (e.g.
sensors and human notes), and other clinically relevant considera-
tions. We would also want to include more nuanced data, such as
where and over what time scale the dataset was collected, as well
as any limitations, legal matters, or ethical considerations that the
collectors wish to share.

We also recommend that the FDA ensure strong Error Auditing
during the SaMD approval process. To catch non-obvious errors like
the “untreated pneumothorax” case, we strongly encourage having
practicing clinicians (or other appropriate stakeholders) spot check
randomly selected output of the model, similar to what was done
in the Hidden Stratification paper [39].

5.3 Addressing Historical and Societal Bias
To address historical bias, we recommend that the NIH, NSF, and
other federal grant-giving bodies provide additional research incen-
tives for the gathering of datasets and studies that provide insights
into the experiences of minority populations specifically, and into
diagnostic nuances that are confounded by factors such as ethnicity,
socioeconomic status, sexual orientation, and gender. This could,
for example, take the form of an NIH Request For Applications
(RFA) in the area of bias research, diverse dataset collection and
model building [43].

In the practice of data collection, we also recognize the potential
for unethical practices. It is critically important that these incen-
tives promote doing research *with* these communities, and not
just research *about* them. In 2019, Google – with the desire to
train their Facial Recognition AI on a diverse set of faces – hired
contractors to photograph people experiencing homeless and took
their pictures [45]. Although in a narrow sense, this would help that
Facial Recognition tool better handle diverse users, this approach
was wrong. In Data Feminism, Catherine D’Ignazio and Lauren
Klein introduce their framework for understanding data science
and research through the lens of power [13]:

• Data science by whom?
• Data science about whom?
• Data science with whose values?

When outcomes are consistently unjust, redesigning the process be-
comes the only way to build trust in a system. For this reason, these
incentives should be structurally designed to empower impacted
communities, perhaps by giving those stakeholders the authority to
award grants to projects that would be address their needs. Trials
should be designed and conducted with informed consent, ethics,
and justice in mind (and in accordance with legislation surrounding
the National Research Act of 1974 [42]).
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Table 1: Bias Types and Corresponding Recommendations

Bias Type Example Recommendation
Representation Bias: The training set
does not accurately represent real-
world data.

Training amelanoma classifier to detect can-
cer for patients with white skin only, and
then expecting it to perform well on darker
skin colors.

1. Establish best practices in dataset collec-
tion
2. Encourage diverse dataset development
through NIH RFPs
3. FDA approval pathways should involve
testing on diverse held-out data

Measurement Bias: The way that the
training data is measured/collected in-
troduces inaccuracies in the model.

Inconsistencies in the quality of EHR data
for a given patient in different hospitals in-
troduces bias from different ways of mea-
suring patient outcomes.

1. Establish best practices in dataset collec-
tion
2. Encourage diverse dataset development
through NIH RFPs
3. FDA approval pathways should involve
testing on diverse held-out data
4. Involve domain experts early on in the
process of designing medical AI, in order to
avoid improper collection

Aggregation Bias: Multiple datasets are
improperly combined in a single model.

Combining all blood biomarkers for dia-
betes across different ethnicities, and ex-
pecting it to perform well for all ethnici-
ties despite biomarker differences between
groups.

1. Require a limited-deployment stage in ap-
proving SaMDwhere the algorithm is tested
2. Involve conversations between domain
experts and data scientists to identify poten-
tial issues with aggregation

Historical/Societal Bias: Datasets accu-
rately reflect our current reality, and
therefore existing societal inequality.

Developing an algorithm that uses ZIP code
as a feature in predicting hospital length of
stay, for use in assigning a case manager to
those who are predicting to stay a shorter
amount of time. Results in discrimination
against socioeconomically disadvantaged
patients.

1. Encourage diverse dataset development
through NIH RFPs
2. Developers should work with ethicists
and all stakeholders to consider the impli-
cations of using particular dataset features

5.4 Privacy and Consent
Additional research is necessary to capture the appropriate balance
between dataset information and protection of patient privacy (a
good test would be: does this information about the dataset allow
us to trace the data back to specific patient groups?). However, the
current technical solutions to the de-identification problem are a
good starting point for our recommendations. The MIMIC dataset
used a rule-based de-identification system. “The de-identification
process for structured data required the removal of all eighteen
of the identifying data elements listed in HIPAA, including fields
such as patient name, telephone number, address, and dates. In
particular, dates were shifted into the future by a random offset for
each individual patient in a consistent manner to preserve inter-
vals . . . Time of day, day of the week, and approximate seasonality
were conserved during date shifting” [31]. Recurrent Neural Nets,
which are a subset of neural network methods, have been shown to
outperform manual de-identification rules in de-identifying EHR
data [12]. NeuroNER [11], developed in the same lab as MIMIC,
provides an interface for non-experts to label data points to train a
named-entity recognition (NER) neural network such as the one
cited above. Such neural networks are used to identify sensitive

patient data in health records, and could be used to implement our
recommendations. The NIH and other relevant bodies may con-
sider introducing recent developments in privacy technology for
medical AI - namely, the concepts of remote execution, differential
privacy, end-to-end encryption, and secure multi-party communica-
tion. These concepts would also be valuable to private entities (e.g.
hospitals and healthcare organizations) developing secure gateways
to their own patient information. Overall, there is a rich background
for technological tools for patient de-identification in health-related
datasets, and we advocate for the architects of solutions based on
our recommendations to make use of these tools.

By capturing as much information about the data collection
process and recommended usage as possible, we can easily trace
instances of bias to specific data collection factors. We would also be
able to quickly identify the potential limitations of a given dataset
(for example, that the data may have been inaccurate because of
the use of a particular medical device). This would involve some
amendments to be included in submissions to the NIH’s Data and
Specimen Hub (DASH) [44].
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6 DISCUSSION
In this paper, we argue for targeted incentives, regulations, and
data collection/auditing to address a multitude of related problems
in dataset bias for AI Diagnostics.

One concern with these recommendations is these additional
guidelines on datasets will serve as restrictions on innovation, and
that it will be harder for smaller companies to enter the healthcare
AI space as a result. This argument is often introduced whenever
the government considers new regulations for industry.

However, the evidence does not show this to be true. In the
biotechnology industry, for example, when the FDA increased pre-
approval scrutiny in medical devices in 1976, there was a drop
in innovation, but it was temporary [48]. Market innovation re-
bounded after a few years, as companies learned to adjust to the
new regulations. While in some cases there was a decrease in inno-
vation with new regulations, this only occurred with regulations
that required significant changes in technology, or if there was
a lot of uncertainty regarding future regulation [48]. Sometimes
regulation can even allow companies to improve their operations.
For example, the European Union’s GDPR (General Data Protection
Regulation) required many tech companies to significantly change
how they handled data. This resulted in companies keeping better
track of their data and how it flows, forcing different departments
to communicate with each other more, which was beneficial for
future innovation in these companies[34].

Another concern is that the implementations of our recommen-
dations – particularly the data collection – could be a challenging
feat for a governmental agency to pull off. In order for the FDA to
successfully implement the technical systems that will handle the
collection of sensitive patient data, they must prioritize security
and robustness for the design of these systems. The most famous ex-
ample of the US government failing to deliver on a large IT project
is the botched rollout of healthcare.gov in 2013. The main cause of
this failure is that different government contractors were working
in silos on different parts of the website, and there was no effective
structure in place to properly relay feedback and critical issues from
one silo to another [24]. Since then, many agencies have learned
from that failure, and have introduced reforms to breakdown silos
and ensure better communication throughout that agency. The FDA
is currently executing its Technology Modernization Action Plan
[14], which will:

(1) Modernize their technical infrastructure.
(2) Enhance their capabilities to develop technology products

to support its regulatory mission.
(3) Communicate and Collaborate with stakeholders to drive

technological progress that is interoperable across the system
and delivers value to consumers and patients.

While proposals to reform government contract procurement fall
outside the scope of our paper, we point to such proposals [32] to
help mitigate failure in government digital endeavors.

7 CONCLUSION
In this proposal, we have outlined the recent history of how bias
in datasets used for clinical trials – and more specifically in ma-
chine learning-based diagnostics – create unfair and inaccurate

outcomes. There is urgency in developing a coherent set of pol-
icy recommendations for addressing this emerging issue. We have
also enumerated the different, surprising ways bias can arise in
the healthcare data. It is critical to address these problems in a
targeted way, with different policy interventions for different forms
of dataset bias. Through a combination of incentives, regulations,
and increased transparency, we believe that many of the serious
problems in biased AI-based diagnostics can be addressed. We urge
policymakers and other relevant stakeholders to consider recom-
mendations and address the issue of bias in AI healthcare datasets.
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